
CMP++
Technical Documentation

Version 1.0

Omar Kahol
March 28, 2024

Contents

1 Introduction 2

2 Installation 3
2.1 Installing Eigen . 3
2.2 Installing NLopt . 3
2.3 Installing spdlog . 4
2.4 Installing CMP++ . 4
2.5 Linking CMP++ . 5

3 Test-cases 7
3.1 Test gp . 7
3.2 test cmp . 9

3.2.1 results . 14

List of Code Listings

1

1 Introduction

This document is the technical documentation for the library CMP++1 which
can be used for the Bayesian calibration of computer models using various
approches such as

1. Full Bayes.

2. Adaptive approaches (like CMP and FMP) .

3. Sequential approaches (like KOH).

The library is written entirely in C++ and currently provides no high level config-
uration file hence the pre-processing should be done using a C++ application.
The post-processing can be performed using any library or software capable
of handling csv input files. The test case in this documentation relies on
python and seaborn.
The library can be compiled as a static library or dynamic library and depends
on the following libraries:

1. Eigen 3.4.02 for linear algebra.

2. NLopt 2.7.13 for gradient-free and gradient-based optimization.

3. spdlog4 for input/output.

4. Doxygen5 to generate the documentation.

Though not strictly necessary, I also suggest the use of the following libraries:

1. cubature6 for the computation of multidimensional integrals.

2. finte-diff7 for finite difference approximations of gradients and hessians.

3. openmp8 for code parallelization.

These libraries have proven themselves to be excellent tools to perform
routine operations. For example, finte-diff9 can be used to compute the finite
difference approximation of the hessian matrix (used by the CMP method) in
case a closed form formula is not available.

1https://github.com/omarkahol/cmp.git
2https://eigen.tuxfamily.org/index.php?title=Main_Page
3https://nlopt.readthedocs.io/en/latest/
4https://github.com/gabime/spdlog
5https://www.doxygen.nl
6https://github.com/stevengj/cubature
7https://github.com/zfergus/finite-diff.git
8https://www.openmp.org
9https://github.com/zfergus/finite-diff.git

2

https://github.com/omarkahol/cmp.git
https://eigen.tuxfamily.org/index.php?title=Main_Page
https://nlopt.readthedocs.io/en/latest/
https://github.com/gabime/spdlog
https://www.doxygen.nl
https://github.com/stevengj/cubature
https://github.com/zfergus/finite-diff.git
https://www.openmp.org
https://github.com/zfergus/finite-diff.git
https://github.com/omarkahol/cmp.git
https://eigen.tuxfamily.org/index.php?title=Main_Page
https://nlopt.readthedocs.io/en/latest/
https://github.com/gabime/spdlog
https://www.doxygen.nl
https://github.com/stevengj/cubature
https://github.com/zfergus/finite-diff.git
https://www.openmp.org
https://github.com/zfergus/finite-diff.git

2 Installation

This section is dedicated to the installation of the CMP++ library and its
dependencies. Expert users can skip this section, install the dependencies
themselves, compile CMP++ using the provided Makefile and link it to their
target application either as a static or dynamic library. The following workflow
is, however, strongly recommended.
First and foremost, make sure that you have a C++ compiler and cmake
installed in your system. The latter can be checked by calling the command
make anywhere in your system. You should see the following message

make: *** No targets specified and no makefile found. Stop.

I strongly suggest to keep all your libraries in a well known location; I keep all
the libraries that I use in HOME/opt. If you choose a different location make
sure you known how to reference it.

2.1 Installing Eigen

Eigen is a header only library so compilation is not required. Simply download
the library from the official website and copy it in your HOME/opt folder. To
use it, you will just have to type, in your c++ application,

#include <Eigen/Dense>

2.2 Installing NLopt

NLopt is compiled and linked as a dynamic library. This means that we will
compile it as .dylib (in MacOs) file and link it dynamically to our application.
Make sure you are familiar with this concept before proceeding.
To install NLopt in HOME/opt copy the downloaded file in that folder andmake
sure that the name is something like nlopt-2.7.1 (otherwise simply rename
the folder), access it via the terminal and type the following commands.

3

mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=$HOME/opt/nlopt-2.7.1 ..
make
make install

This will compile the library into HOME/opt/nlopt-2.7.1 but you can change
that by substituting HOME/opt in line 3 with whatever folder you desire. If the
installation was successful, you should see that, in the nlopt folder you have
an include folder which contains some header files and a lib folder which
should contain (in MacOs) a libnlopt.dylib file. These two folders and files
are the only one required so the rest can be safely removed.
Now that we have compiled the library another operation must be performed.
It is indeed necessary to append the lib folder path to the system path so that
the executable knows where to look for the library during runtime. In MacOs,
it is sufficient to add the following line to the .zshrc file in the home folder
and restart the terminal

export DYLD_LIBRARY_PATH=${DYLD_LIBRARY_PATH}:$HOME/opt/nlopt-2.7.1/lib

If this is not properly done, your code will compile and link properly but you
will see an unresolved external symbol error message at runtime.

2.3 Installing spdlog

Just like Eigen, spdlog can be used as header only library so you just need to
copy the downloaded folder into your opt folder and make sure you have the
include folder aswell.

2.4 Installing CMP++

In this subsection, I will show how to compile CMP++ as a static library.
Currently, i have not added the possibility to compile it as a dynamic library
but, if needed, you can add this option in the make file. To do so, you need
to copy the downloaded folder into your opt folder and modify the makefile.
The makefile instructs your system on how to compile CMP++

4

define the Cpp compiler to use
CXX = g++

define any compile-time flags
CXXFLAGS := -std=c++17 -Wl,-ld_classic -O3 -g

define external includes
EIGEN = $(HOME)/opt/eigen-3.4.0/
NLOPTINC = $(HOME)/opt/nlopt-2.7.1/include
SPDLOGINC = $(HOME)/opt/spdlog/include
SELF = ./include

Extrenals include files and folders
INCLUDES = -I$(EIGEN) -I$(NLOPTINC) -I$(SPDLOGINC) -I$(SELF)

The first variable is the c++ compiler chosen, you can modify it to use your
preferred one. The CXXFLAGS variable defines the compile-time flags to be
passed to the compiler and the variables EIGEN, NLOPTINC, SPDLOGINC
and SELF contain the path to the include folder of the dependencies. If you
have installed them in a different folder, you have to modify these variables
accordingly.
You should then type the command make in the terminal to proceed.
If the compilation is successful you should now see a file called libcmp.a in
the lib folder.
This step should also generate the Doxygen documentation for the code in a
folder called docs.

2.5 Linking CMP++

I will now walk you through the suggested use of the cmp++ library. To do so,
I will use the test_cmp case study included in the cmp library folder which will
be thoroughly discussed in the following sections. In that folder will see the
example of a workflow for the calibration of a simple computer model which
can be adapted to numerous cases. In the folder you should have a main.cpp
file which contains the actual code for the calibration and a Makefile which
tells your system how to compile and link the code to existing libraries. I will
now focus on the latter and discuss the contents of the main.cpp file in a
subsequent section.

5

define the Cpp compiler to use
CXX = g++-13

define any compile-time flags
CXXFLAGS := -std=c++17 -Wl,-ld_classic -O3 -g

define external includes
EIGEN = $(HOME)/opt/eigen-3.4.0/
NLOPTINC = $(HOME)/opt/nlopt-2.7.1/include
SPDLOG = $(HOME)/opt/spdlog/include
CMPINC = $(HOME)/opt/CMP++/include

define external libs
NLOPTLIB = $(HOME)/opt/nlopt-2.7.1/lib
CMPLIB = $(HOME)/opt/CMP++/lib

#include specific paths
INCLUDES = -I$(EIGEN) -I$(NLOPTINC) -I$(SPDLOG) -I$(CMPINC)

#include specific libraries
LIBS = -L$(NLOPTLIB) -L$(CMPLIB)

define library flags
LFLAGS = -lcmp -lnlopt

define target file
TARGET = main.cpp

define executable
OUTPUT = out

This is the makefile you should modify. Apart from the c++ executable and
flags you can see the define external includes section and the define external
libs one. In the first one wewill put the path of the header files of our 4 libraries
(eigen, spdlog, nlopt, cmp++) and then add it to the INCLUDE variable with an
-I in front. The second one contains the path of the lib forlder of our libraries
(note that spdlog and eigen are header only so they do not have such folder)
and should be added into the LIBS variables with an -L in front. The reader
is reminded that cmp++ is compile and linked as a static library while nlopt
as a dynamic library. At this point we add the library name that we want to
use to the LFLAGS variable. If the name of the library is libmylib.dylib the
convention is to discard the prefix lib and extension .dylib and append an -l at

6

the beginning; so it becomes -lcmp.
The last line contain the name of the target to be compiled, in this case
main.cpp, and the name of the executable to be generated, in this case out.

3 Test-cases

3.1 Test gp

This test case showcases the Gaussian Processes (GPs) library included in
CMP++. The library has the capability to train GPs and use them for prediction.
We assume to have observations, in the range [0, 1], from the function

f(x) = sin x + 1 (1)

And we choose to train a GP with the following mean and covariance function

µψ(x) = ψ0

cψ(x, y) = η2δx−y + ψ2
1 exp−

1
2

(
x− y
ψ2

)2

.
(2)

Where η, termed nugget, is a small constant to ensure positivity of the resulting
covariance matrix and ψ = (ψ0,ψ1,ψ2) are the hyperparameters of the GP.

To proceed we first define the observations which are n points sampled
uniformly in the interval [0,1] and corresponding to the function sin(x) + 1.

After having generated the observations and defined a few quantities we
proceed by defining the most important functions for the Gaussian Process
which are the mean, kernel and the prior on the hyper-parameters

7

1 // Define GP-kernel
2 auto kernel = [](vector_t x, vector_t y, vector_t hpar){
3 return
4 };
5

6 // Define GP-mean
7 auto mean = [](const vector_t &x, const vector_t &hpar){
8 return ...;
9 };

10

11 // Define log-prior
12 auto logprior = [](const vector_t &par){
13 return ...;
14 };

We make use of lamnda functions to simplify the code. After these quantities
are created, we can proceed by defining the GP

1 gp my_gp;
2 my_gp.set_mean(mean);
3 my_gp.set_kernel(kernel);
4 my_gp.set_par_bounds(-2*vector_t::Ones(3),2*vector_t::Ones(3));
5 my_gp.set_logprior(logprior);
6 my_gp.set_obs(v_to_vvxd(x_obs),y_obs);

Here we have initialized the gp object and used the set method to define
the mean, the kernel, the log-prior and the bounds to be used during the
optimization.
Now the optimal hyper-parameters can be found by using the built in opti-
mization routine which implements the MAP optimization

1 vector_t par_opt = my_gp.par_opt(par_guess,1E-5);
2

3 // Compute reisiduals, and the LDLT decomp.
4 auto cov = my_gp.covariance(par_opt);
5 auto res = my_gp.residual(par_opt);
6 auto ldlt = Eigen::LDLT<matrix_t>(cov);

8

If the required quantities quantities have not been defined the routine will not
work at runtime. Here, as you can see, it is only necessary to pass a suitable
guess and the tolerance.
We immediately compute the residuals and the LDLT decomposition of the
covariance matrix which can be saved and re-used for many computations.
An example, is their use in the predictive equations to compute the mean and
the variance at a new point x∗. This is done by the function predict which
return these quantities in a matrix. The data is then saved in a .csv file and
read by a python script.

3.2 test cmp

This test-case is designed in order to test the cmp method on the calibration
of a simple model. The model was inspired by my master thesis10 and the
computer model should be an inadequate representation of the functional
relationship between the thrust coefficient, CT and the dimensionless voltage,
V̂, of an ionic thruster. The model, depends on two parameters, θ1 and θ2 and
reads:

CT = θ1 tanh
θ2
θ1

(
V̂ − 1

)
. (3)

To calibrate it, we use 8 experimental points contained in the file data.csv. The
error term is assumed to be made up of two components. This first one is the
model error term which is a Gaussian process with zero mean and squared
exponential kernel as covariance. The second one is the experimental error
and we choose a white noise process. The error covariance function reads

cψ(x, y) = σ2
eδx−y + σ2 exp− 1

2

(
x− y

l

)2

. (4)

So we have 2 parameters and 3 hyperparameters. To avoid constraints, we
use the log of the hyperparameters. The prior is left to be uniform for the
model parameters and a combination of inverse gamma functions for the
hyperparamters.

10https://omarkahol.github.io/projects/1_project/

9

https://omarkahol.github.io/projects/1_project/
https://omarkahol.github.io/projects/1_project/

1 // Model to calibrate
2 double model(const vector_t &x, const vector_t &par) {
3 double V_hat = x(0)-1;
4 return par(0)*tanh(par(1)*V_hat/par(0));
5 }
6

7 // Kernel
8 double err_kernel(const vector_t & x, const vector_t &y, const

vector_t & hpar) {↪→

9 double sigma_e = exp(hpar(0));
10 double sigma_k = exp(hpar(1));
11 double l = exp(hpar(2));
12

13 return white_noise_kernel(x,y,sigma_e) +
squared_kernel(x,y,sigma_k,l);↪→

14 }
15

16 // kernel gradient, i is the component required
17 double err_kernel_gradient(const vector_t & x, const vector_t

&y, const vector_t & hpar, const int &i) {↪→

18 return ...;
19 }
20

21 // kernel hessian, i and j are the row and colum respectively
22 double err_kernel_hessian(const vector_t & x, const vector_t

&y, const vector_t & hpar, const int &i, const int &j) {↪→

23 return ...;
24 }
25

26 // hyperparameter prior
27 double logprior_hpar(const vector_t & hpar) {
28 double sigma_e = exp(hpar(0));
29 double sigma_k = exp(hpar(1));
30 double l = exp(hpar(2));
31 return log_inv_gamma_pdf(exp(hpar(0)),3,0.04)+...;
32

33 // prior hessian
34 double logprior_hpar_hessian(const vector_t &hpar, const int

&i, const int &j) {↪→

35 return ...;
36 }

10

Before the main function, we need to define a few important quantities. In
particular we should define the model function which should evaluate the
computer model on a point. Note that the dimension can be larger than 1
(for example x = x,y,z,t) so we use a Eigen::VectorXd type. We should also
define the error kernel which depends on two points x and y and the vector
of the hyperparameters and the log-prior. A handful of covariance function,
their gradients, pdfs and their gradients is already implemented in pdf.h and
kernel.h.

The first few lines of the main function are dedicated to setup operations like
reading an input file containing the data and initializing the simulation. note
that we should define

1. An initial proposal value for the parameters (to be used as starting point
for the MCMC)

2. An initial proposal value for the hyperparameters and their bounds
(all in log) to be used as starting point for the MCMC and during the
optimization.

3. A proposal covariance function for the simulation.

When this is done, we have to define the mean function of the error model
and the log prior of the parameters. Because we choose uniform prior and
zero mean we can implement these function using lambdas.

11

1

2 //Create the model error
3 gp model_error;
4 model_error.set_mean(err_mean);
5 model_error.set_kernel(err_kernel);
6 model_error.set_kernel_gradient(err_kernel_gradient);
7 model_error.set_kernel_hessian(err_kernel_hessian);
8

9 model_error.set_logprior(logprior_hpar);
10 model_error.set_logprior_hessian(logprior_hpar_hessian);
11 model_error.set_par_bounds(lb_hpar,ub_hpar);
12 model_error.set_obs(v_to_vvxd(x_obs),y_obs);
13

14

15 //create density
16 density main_density;
17

18 // set up the main properties
19 main_density.set_model(model);
20 main_density.set_model_error(&model_error);
21 main_density.set_log_prior_par(logprior_par);
22 main_density.set_obs(v_to_vvxd(x_obs),y_obs);
23

Now we initialize the two main objects for the simulation which are the model
error gp class and themain density class. Make sure to initialize every quantity
properly or the simulation will not work.

12

1

2

3 // create the getter function for the hyperparameters. It is an
optimization↪→

4 get_hpar_t get_hpar = [&main_density](const vector_t &par,
const vector_t &hpar) {↪→

5 return main_density.hpar_opt(par,hpar,1e-4);
6 };
7

8 // create the score function
9 score_t score = [&main_density,&model_error,&x_obs](const

vector_t & par, const vector_t & hpar) {↪→

10

11 auto res = main_density.residuals(par);
12 auto cov = model_error.covariance(hpar);
13 Eigen::LDLT<matrix_t> cov_inv(cov);
14

15 return main_density.loglikelihood(res,cov_inv) +
main_density.logprior_par(par) +
main_density.model_error()->logprior(hpar);

↪→

↪→

16 };
17

18 in_bounds_t in_bounds = [&main_density](const vector_t & par) {
19 return true;
20 };
21

Using lambda functions we initialize two other important functions. The first
one is the getter function for the hyper-parameters which given the current
value of themodel parameters and the previous value of the hyper-parameters
should return the current value of the hyperparameters. Depending on the
value returned we can implement different methods

1. We can return some elements of the par vector if the hyperparameters
are sampled together with the model parameters (for the full bayesian
method)

2. We can return the maximizer of the posterior (like the CMP and FMP
methods)

3. We can return a fixed value (like the KOH method)

13

In our case we choose to maximize the posterior so we call the hpar_opt
function which performs the optimization using the NLopt library.
the other function required is the one to compute the MCMC score. For the
CMPmethod this is equivalent to theCMPapproximation of the un-normalized
posterior distribution which is made up by three contributions

1. log-likelihood

2. log-prior

3. log-correction factor

To compute them we first evaluate the covariance matrix and the residuals
and then proceed by finding the Cholesky decomposition of the covariance
matrix and then call the respective functions.
When this is done we can just proceed by performing the MCMC simulation.
Tutorial on MCMC coming soon.

3.2.1 results

Once saved, the samples and the predictions can be used together with the
python scripts to generate visualizations.

14

0.3 0.4 0.5
θ1

0.2

0.3

0.4

0.5

0.6
θ 2

Figure 1: Posterior distribution

Fig. 1 shows the resulting posterior distribution along with the KDE of the
marginal posteriors.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.0

0.1

0.2

0.3

0.4

Experimental points

calibrated model

corrected model

Figure 2: Predictive distribution

Fig. 2 shows the resulting predictive posterior distribution of the corrected

15

and calibrated model.

16

	Introduction
	Installation
	Installing Eigen
	Installing NLopt
	Installing spdlog
	Installing CMP++
	Linking CMP++

	Test-cases
	Test gp
	test cmp
	results

